Abstract Submitted for the DPP13 Meeting of The American Physical Society

Sorting Category: 1.2.6 (Experimental)

Empirical model for low-frequency asymmetry-induced

transport¹ D.L. EGGLESTON, Occidental College — We are currently developing an empirical model of asymmetry-induced transport in our non-neutral plasma trap with an eye toward providing guidance for further theoretical development. Our previous efforts² have focused on radii where the asymmetry frequency f matches the local $\mathbf{E} \times \mathbf{B}$ plasma rotation frequency f_R . We now study the radial particle flux Γ produced by frequencies below f_R . The flux produced by these frequencies is typically largest at the outer edge of the plasma, $r/R \geq 0.75$, where R is the wall radius. The data support an empirical model $\Gamma(r) \propto \exp{[-(f_0 - f)/f_*]}$. Both of the parameters f_0 and f_* are proportional to ϕ_{cw}/B , where ϕ_{cw} is the bias of our central wire electrode and B is the axial magnetic field. This scaling suggests a relation with f_R or its derivatives. If we assume the former, then $f_0 \approx 1.5 f_R$ and $f_* \approx f_R/3$. This model is consistent with empirical constraints obtained² near the $f = f_R$ points. The physical basis for this model, however, remains to be found.

¹Supported by U.S. Department of Energy grant DE-FG02-06ER54882 and National Science Foundation grant PHY-1003952. ²D. L. Eggleston, Phys. Plasmas **17**, 042304 (2010).

	Prefer Oral Session
X	Prefer Poster Session

Dennis L. Eggleston dleggles@oxy.edu Occidental College

Date submitted: July 11, 2013 Electronic form version 1.4